2. Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells Int 2012;2012:812693.
https://doi.org/10.1155/2012/812693.
3. Takafuji Y, Tatsumi K, Ishida M, et al. Plasminogen activator inhibitor-1 deficiency suppresses osteoblastic differentiation of mesenchymal stem cells in mice. J Cell Physiol 2019;234:9687-97.
https://doi.org/10.1002/jcp.27655.
7. Martin TJ, Allan EH, Fukumoto S. The plasminogen activator and inhibitor system in bone remodelling. Growth Regul 1993;3:209-14.
8. Alliston T, Choy L, Ducy P, et al. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001;20:2254-72.
https://doi.org/10.1093/emboj/20.9.2254.
10. Zhang J, Shi H, Zhang N, et al. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect. Cell Prolif 2020;53:e12907.
https://doi.org/10.1111/cpr.12907.
11. Yao H, Zou Y, Yang K, et al. TGFβ1 induces bone formation from BMP9-activated bone mesenchymal stem cells, with possible involvement of non-canonical pathways. Int J Med Sci 2020;17:1692-703.
https://doi.org/10.7150/ijms.45786.
12. Xia C, Ge Q, Fang L, et al. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1(+) periosteal cells during fracture healing. Cell Prolif 2020;53:e12904.
https://doi.org/10.1111/cpr.12904.
15. Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012;3:735.
https://doi.org/10.1038/ncomms1734.
16. Funa NS, Mjoseng HK, de Lichtenberg KH, et al. TGF-β modulates cell fate in human ES cell-derived foregut endoderm by inhibiting Wnt and BMP signaling. Stem Cell Reports 2024;19:973-92.
https://doi.org/10.1016/j.stem-cr.2024.05.010.
17. Wang Z, Tian T, Chen L, et al. 980 nm photobiomodulation promotes osteo/odontogenic differentiation of the stem cells from human exfoliated deciduous teeth via the cross talk between BMP/Smad and Wnt/β-catenin signaling pathways. Photochem Photobiol 2023;99:1181-92.
https://doi.org/10.1111/php.13751.
18. Kögler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004;200:123-35.
https://doi.org/10.1084/jem.20040440.
19. Dolatyar B, Zeynali B, Shabani I, et al. Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds. Biodes Manuf 2024;7:701-20.
https://doi.org/10.1007/s42242-024-00304-3.
20. Hedayati S, Parvaneh Tafreshi A, Moradi N, et al. Inhibition of transforming growth factor-β signaling pathway enhances the osteogenic differentiation of unrestricted somatic stem cells. J Cell Biochem 2018;119:9327-33.
https://doi.org/10.1002/jcb.27209.
22. Zhou S. TGF-β regulates β-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem 2011;112:1651-60.
https://doi.org/10.1002/jcb.23079.
23. Lee KS, Kim HJ, Li QL, et al. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 2000;20:8783-92.
https://doi.org/10.1128/mcb.20.23.8783-8792.2000.
24. Zhao L, Jiang S, Hantash BM. Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A 2010;16:725-33.
https://doi.org/10.1089/ten.TEA.2009.0495.
26. Letamendia A, Labbé E, Attisano L. Transcriptional regulation by Smads: crosstalk between the TGF-beta and Wnt pathways. J Bone Joint Surg Am 2001;83-A:Suppl 1. S31-9.
27. Labbé E, Lock L, Letamendia A, et al. Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 2007;67:75-84.
https://doi.org/10.1158/0008-5472.Can-06-2559.
29. De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 2004;10:393-401.
https://doi.org/10.1089/107632704323061753.
30. Tafreshi AP, Shahraz A, Dastjerdi FV, et al. Inhibition of GSK-3β in unrestricted somatic stem cells (USSCs) causes adipogenic differentiation while inhibits osteogenic differentiation. In: Paper presented at: 4th International congress on Stem Cells and Tissue Formation. 2012 Jul 18-20; Dresden, DE. pp 161.
31. Vardanjani MM, Najafabadi IK, Tafreshi AP, et al. The effects of dickkopf-related protein 1 (DKK1) on osteogenic differentiation of unrestricted somatic stem cells (USSCs). In: Paper presented at: Stem Cells in Development and Disease. 2011 Sep 11-14; Berlin, DE. pp 187.
33. Qiu W, Andersen TE, Bollerslev J, et al. Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res 2007;22:1720-31.
https://doi.org/10.1359/jbmr.070721.
35. Gaur T, Lengner CJ, Hovhannisyan H, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 2005;280:33132-40.
https://doi.org/10.1074/jbc.M500608200.
36. Boland GM, Perkins G, Hall DJ, et al. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 2004;93:1210-30.
https://doi.org/10.1002/jcb.20284.
37. van der Horst G, van der Werf SM, Farih-Sips H, et al. Down-regulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 2005;20:1867-77.
https://doi.org/10.1359/jbmr.050614.