5. Rusinek-Prystupa E, Marzec Z, Sembratowicz I, et al. Content of selected minerals and active ingredients in teas containing yerba mate and rooibos. Biol Trace Elem Res 2016;172:266-75.
https://doi.org/10.1007/s12011-015-0588-9.
6. Lorini A, Damin FM, de Oliveira DN, et al. Characterization and quantification of bioactive compounds from Ilex paraguariensis residue by HPLC-ESI-QTOF-MS from plants cultivated under different cultivation systems. J Food Sci 2021;86:1599-619.
https://doi.org/10.1111/1750-3841.15694.
7. Galante M, Brun LR, Mandón E, et al. Chapter 10 Insights into yerba mate components: chemistry and food applications. In: Atta-Ur-Rahman , editors. Studies in natural products chemistry. Amsterdam, NL: Elsevier; 2023. p.383. -433.
8. Bravo L, Mateos R, Sarriá B, et al. Hypocholesterolaemic and antioxidant effects of yerba mate (Ilex paraguariensis) in high-cholesterol fed rats. Fitoterapia 2014;92:219-29.
https://doi.org/10.1016/j.fitote.2013.11.007.
9. de Morais EC, Stefanuto A, Klein GA, et al. Consumption of yerba mate ( Ilex paraguariensis ) improves serum lipid parameters in healthy dyslipidemic subjects and provides an additional LDL-cholesterol reduction in individuals on statin therapy. J Agric Food Chem 2009;57:8316-24.
https://doi.org/10.1021/jf901660g.
10. Arçari DP, Bartchewsky W, dos Santos TW, et al. Antiobesity effects of yerba maté extract (Ilex paraguariensis) in high-fat diet-induced obese mice. Obesity (Silver Spring) 2009;17:2127-33.
https://doi.org/10.1038/oby.2009.158.
12. Pimentel GD, Lira FS, Rosa JC, et al. Yerba mate extract (Ilex paraguariensis) attenuates both central and peripheral inflammatory effects of diet-induced obesity in rats. J Nutr Biochem 2013;24:809-18.
https://doi.org/10.1016/j.jnutbio.2012.04.016.
13. Arçari DP, Bartchewsky W Jr, dos Santos TW, et al. Anti-inflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with high fat diet-induced obesity. Mol Cell Endocrinol 2011;335:110-5.
https://doi.org/10.1016/j.mce.2011.01.003.
15. Conforti AS, Gallo ME, Saraví FD. Yerba Mate (Ilex paraguariensis) consumption is associated with higher bone mineral density in postmenopausal women. Bone 2012;50:9-13.
https://doi.org/10.1016/j.bone.2011.08.029.
16. Brun LR, Brance ML, Lombarte M, et al. Effects of yerba mate (IIex paraguariensis) on histomorphometry, biomechanics, and densitometry on bones in the rat. Calcif Tissue Int 2015;97:527-34.
https://doi.org/10.1007/s00223-015-0043-0.
17. da Veiga DTA, Bringhenti R, Bolignon AA, et al. The yerba mate intake has a neutral effect on bone: a case-control study in postmenopausal women. Phytother Res 2018;32:58-64.
https://doi.org/10.1002/ptr.5947.
19. Chen Z, Pettinger MB, Ritenbaugh C, et al. Habitual tea consumption and risk of osteoporosis: a prospective study in the women's health initiative observational cohort. Am J Epidemiol 2003;158:772-81.
https://doi.org/10.1093/aje/kwg214.
21. Hubert PA, Lee SG, Lee SK, et al. Dietary polyphenols, berries, and age-related bone loss: a review based on human, animal, and cell studies. Antioxidants (Basel) 2014;3:144-58.
https://doi.org/10.3390/antiox3010144.
25. Ceverino GC, Sanchez PKV, Fernandes RR, et al. Preadministration of yerba mate (Ilex paraguariensis) helps functional activity and morphology maintenance of MC3T3-E1 osteoblastic cells after in vitro exposition to hydrogen peroxide. Mol Biol Rep 2021;48:13-20.
https://doi.org/10.1007/s11033-020-06096-w.
26. Balera Brito VG, Chaves-Neto AH, Landim de Barros T, et al. Soluble yerba mate (Ilex Paraguariensis) extract enhances in vitro osteoblastic differentiation of bone marrow-derived mesenchymal stromal cells. J Ethnopharmacol 2019;244:112131.
https://doi.org/10.1016/j.jep.2019.112131.
27. Hartwig VG, Schmalko ME, Alzamora SM, et al. Optimization of the extraction of antioxidants and caffeine from Maté (Ilex paraguariensis) leaves by response surface methodology. Int J Food Stud 2013;2:69-80.
https://doi.org/10.7455/ijfs/2.1.2013.a6.
28. Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 1985;33:213-7.
https://doi.org/10.1021/jf00062a013.
29. Lupo M, Brance ML, Fina BL, et al. Methodology developed for the simultaneous measurement of bone formation and bone resorption in rats based on the pharmacokinetics of fluoride. J Bone Miner Metab 2015;33:16-22.
https://doi.org/10.1007/s00774-013-0557-3.
30. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 2000;48:3597-604.
https://doi.org/10.1021/jf000220w.
34. Quarles LD, Yohay DA, Lever LW, et al. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 1992;7:683-92.
https://doi.org/10.1002/jbmr.5650070613.
35. Bernardi A, Ballestero P, Schenk M, et al. Yerba mate (Ilex paraguariensis) favors survival and growth of dopaminergic neurons in culture. Mov Disord 2019;34:920-2.
https://doi.org/10.1002/mds.27667.
36. Deladino L, Schneider Teixeira A, Reta M, et al. Major phenolics in yerba mate extracts (Ilex paraguariensis) and their contribution to the total antioxidant capacity. Food Nutr Sci 2013;4:154-62.
https://doi.org/10.4236/fns.2013.48A019.
38. Vera Garcia R, Peralta I, Caballero S. Fraction of minerals extracted from Paraguayan yerba mate (Ilex paraguariensis, S.H.) by cold tea (maceration) and hot tea (infusion) as consumed in Paraguay. Rojasiana 2005;7:21-5.
41. Ilich JZ, Brownbill RA, Tamborini L, et al. To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women? J Am Coll Nutr 2002;21:536-44.
https://doi.org/10.1080/07315724.2002.10719252.
43. Huang TH, Yang RS, Hsieh SS, et al. Effects of caffeine and exercise on the development of bone: a densitometric and histomorphometric study in young Wistar rats. Bone 2002;30:293-9.
https://doi.org/10.1016/s8756-3282(01)00659-7.
45. Liu SH, Chen C, Yang RS, et al. Caffeine enhances osteoclast differentiation from bone marrow hematopoietic cells and reduces bone mineral density in growing rats. J Orthop Res 2011;29:954-60.
https://doi.org/10.1002/jor.21326.
46. Tsuang YH, Sun JS, Chen LT, et al. Direct effects of caffeine on osteoblastic cells metabolism: the possible causal effect of caffeine on the formation of osteoporosis. J Orthop Surg Res 2006;1:7.
https://doi.org/10.1186/1749-799x-1-7.
47. Moreno MC, Cavalcante GRG, Lins RDAU, et al. Caffeine effect on bone metabolism in rats: a systematic review. Brazilian Archives of Biology and Technology 2021;64:e21200802.
https://doi.org/10.1590/1678-4324-2021200802.
49. Pereira CS, Stringhetta-Garcia CT, da Silva Xavier L, et al. llex paraguariensis decreases oxidative stress in bone and mitigates the damage in rats during perimenopause. Exp Gerontol 2017;98:148-52.
https://doi.org/10.1016/j.exger.2017.07.006.
50. Nicolin V, De Tommasi N, Nori SL, et al. Modulatory effects of plant polyphenols on bone remodeling: a prospective view from the bench to bedside. Front Endocrinol (Lausanne) 2019;10:494.
https://doi.org/10.3389/fendo.2019.00494.
52. Léotoing L, Davicco MJ, Lebecque P, et al. The flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity. Mol Nutr Food Res 2014;58:1239-48.
https://doi.org/10.1002/mnfr.201300836.
53. Kwak SC, Lee C, Kim JY, et al. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression. Biol Pharm Bull 2013;36:1779-86.
https://doi.org/10.1248/bpb.b13-00430.
54. Hu X, Wang L, He Y, et al. Chlorogenic acid promotes osteogenic differentiation of human dental pulp stem cells through Wnt signaling. Stem Cells Dev 2021;30:641-50.
https://doi.org/10.1089/scd.2020.0193.
56. Abdel-Naim AB, Alghamdi AA, Algandaby MM, et al. Rutin isolated from chrozophora tinctoria enhances bone cell proliferation and ossification markers. Oxid Med Cell Longev 2018;2018:5106469.
https://doi.org/10.1155/2018/5106469.