7. Johansson MK, de Vries TJ, Schoenmaker T, et al. Hematopoietic stem cell-targeted neonatal gene therapy reverses lethally progressive osteopetrosis in oc/oc mice. Blood 2007;109:5178-85.
https://doi.org/10.1182/blood-2006-12-061382.
8. Kurihara N, Chenu C, Miller M, et al. Identification of committed mononuclear precursors for osteoclast-like cells formed in long term human marrow cultures. Endocrinology 1990;126:2733-41.
https://doi.org/10.1210/endo-126-5-2733.
9. Udagawa N, Takahashi N, Akatsu T, et al. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 1990;87:7260-4.
https://doi.org/10.1073/pnas.87.18.7260.
10. Matsuzaki K, Udagawa N, Takahashi N, et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun 1998;246:199-204.
https://doi.org/10.1006/bbrc.1998.8586.
14. Hettinger J, Richards DM, Hansson J, et al. Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 2013;14:821-30.
https://doi.org/10.1038/ni.2638.
17. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014;14:392-404.
https://doi.org/10.1038/nri3671.
18. Rivollier A, Mazzorana M, Tebib J, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 2004;104:4029-37.
https://doi.org/10.1182/blood-2004-01-0041.
19. Speziani C, Rivollier A, Gallois A, et al. Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur J Immunol 2007;37:747-57.
https://doi.org/10.1002/eji.200636534.
20. Gallois A, Lachuer J, Yvert G, et al. Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes. J Bone Miner Res 2010;25:661-72.
https://doi.org/10.1359/jbmr.090829.
23. Grzybowski A, Kanclerz P. Re: Bhende et al.: Risk factors for endophthalmitis after pars plana vitrectomies in a tertiary eye institute in India (Ophthalmol Retina. 2018 doi:10.1016/j.oret.2018.01.001). Ophthalmol Retina 2018;2:e7.
https://doi.org/10.1016/j.oret.2018.04.012.
26. Meghraoui-Kheddar A, Barthelemy S, Boissonnas A, et al. Revising CX3CR1 expression on murine classical and non-classical monocytes. Front Immunol 2020;11:1117.
https://doi.org/10.3389/fimmu.2020.01117.
28. Yahara Y, Nguyen T, Ishikawa K, et al. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022;149:dev199908.
https://doi.org/10.1242/dev.199908.
29. Yahara Y, Barrientos T, Tang YJ, et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol 2020;22:49-59.
https://doi.org/10.1038/s41556-019-0437-8.
31. Jacome-Galarza CE, Lee SK, Lorenzo JA, et al. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 2013;28:1203-13.
https://doi.org/10.1002/jbmr.1822.
32. Wu CC, Econs MJ, DiMeglio LA, et al. Diagnosis and management of osteopetrosis: Consensus gidelines from the osteopetrosis working group. J Clin Endocrinol Metab 2017;102:3111-23.
https://doi.org/10.1210/jc.2017-01127.
34. Göthlin G, Ericsson JL. On the histogenesis of the cells in fracture callus. Electron microscopic autoradiographic observations in parabiotic rats and studies on labeled monocytes. Virchows Arch B Cell Pathol 1973;12:318-29.
35. Novak S, Roeder E, Kalinowski J, et al. Osteoclasts derive predominantly from bone marrow-resident CX(3)CR1(+) precursor cells in homeostasis, whereas circulating CX(3)CR1(+) cells contribute to osteoclast development during fracture repair. J Immunol 2020;204:868-78.
https://doi.org/10.4049/jimmunol.1900665.
37. Pronk CJ, Rossi DJ, Månsson R, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 2007;1:428-42.
https://doi.org/10.1016/j.stem.2007.07.005.
38. Seita J, Weissman IL. Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010;2:640-53.
https://doi.org/10.1002/wsbm.86.
39. Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999;190:1741-54.
https://doi.org/10.1084/jem.190.12.1741.
40. Xiao Y, Palomero J, Grabowska J, et al. Macrophages and osteoclasts stem from a bipotent progenitor downstream of a macrophage/osteoclast/dendritic cell progenitor. Blood Adv 2017;1:1993-2006.
https://doi.org/10.1182/bloodadvances.2017008540.
44. Katavić V, Grcević D, Lee SK, et al. The surface antigen CD45R identifies a population of estrogen-regulated murine marrow cells that contain osteoclast precursors. Bone 2003;32:581-90.
https://doi.org/10.1016/s8756-3282(03)00097-8.
45. Jacquin C, Gran DE, Lee SK, et al. Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res 2006;21:67-77.
https://doi.org/10.1359/jbmr.051007.
46. Charles JF, Hsu LY, Niemi EC, et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 2012;122:4592-605.
https://doi.org/10.1172/jci60920.
47. Das A, Wang X, Kang J, et al. Monocyte subsets with high osteoclastogenic potential and their epigenetic regulation orchestrated by IRF8. J Bone Miner Res 2021;36:199-214.
https://doi.org/10.1002/jbmr.4165.
52. Sánchez-Torres C, García-Romo GS, Cornejo-Cortés MA, et al. CD16+ and CD16- human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol 2001;13:1571-81.
https://doi.org/10.1093/intimm/13.12.1571.
53. Ravenhill BJ, Soday L, Houghton J, et al. Comprehensive cell surface proteomics defines markers of classical, intermediate and non-classical monocytes. Sci Rep 2020;10:4560.
https://doi.org/10.1038/s41598-020-61356-w.
54. Cren M, Nziza N, Carbasse A, et al. Differential accumulation and activation of monocyte and dendritic cell subsets in Inflamed synovial fluid discriminates between juvenile idiopathic arthritis and septic arthritis. Front Immunol 2020;11:1716.
https://doi.org/10.3389/fimmu.2020.01716.
55. Sprangers S, Schoenmaker T, Cao Y, et al. Different blood-borne human osteoclast precursors respond in distinct ways to IL-17A. J Cell Physiol 2016;231:1249-60.
https://doi.org/10.1002/jcp.25220.
56. Chiu YG, Shao T, Feng C, et al. CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Ther 2010;12:R14.
https://doi.org/10.1186/ar2915.
57. Damasceno D, Almeida J, Teodosio C, et al. Monocyte subsets and serum inflammatory and bone-associated markers in monoclonal gammopathy of undetermined significance and multiple myeloma. Cancers (Basel) 2021;13:1454.
https://doi.org/10.3390/cancers13061454.
58. Xue J, Xu L, Zhu H, et al. CD14(+)CD16(-) monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK. Arthritis Res Ther 2020;22:221.
https://doi.org/10.1186/s13075-020-02308-7.
59. Lari R, Kitchener PD, Hamilton JA. The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res Ther 2009;11:R23.
https://doi.org/10.1186/ar2616.
60. Komano Y, Nanki T, Hayashida K, et al. Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther 2006;8:R152.
https://doi.org/10.1186/ar2046.
62. Takahashi N, Kukita T, MacDonald BR, et al. Osteoclast-like cells form in long-term human bone marrow but not in peripheral blood cultures. J Clin Invest 1989;83:543-50.
https://doi.org/10.1172/jci113916.
63. Hughes DE, MacDonald BR, Russell RG, et al. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest 1989;83:1930-5.
https://doi.org/10.1172/jci114100.
64. Heymann D, Gouin F, Guicheux J, et al. Upmodulation of multinucleated cell formation in long-term human bone marrow cultures by leukaemia inhibitory factor (LIF). Cytokine 1997;9:46-52.
https://doi.org/10.1006/cyto.1996.0134.
66. Xiao Y, Zijl S, Wang L, et al. Identification of the common origins of osteoclasts, macrophages, and dendritic cells in human hematopoiesis. Stem Cell Reports 2015;4:984-94.
https://doi.org/10.1016/j.stemcr.2015.04.012.
68. Xiao Y, Song JY, de Vries TJ, et al. Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells. Proc Natl Acad Sci U S A 2013;110:12385-90.
https://doi.org/10.1073/pnas.1216082110.
72. Seeling M, Hillenhoff U, David JP, et al. Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci U S A 2013;110:10729-34.
https://doi.org/10.1073/pnas.1301001110.
74. Ibáñez L, Abou-Ezzi G, Ciucci T, et al. Inflammatory osteoclasts prime TNFα-producing CD4(+) T cells and express CX(3) CR1. J Bone Miner Res 2016;31:1899-908.
https://doi.org/10.1002/jbmr.2868.
75. Culemann S, Grüneboom A, Nicolás-Ávila J, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 2019;572:670-5.
https://doi.org/10.1038/s41586-019-1471-1.
76. Hasegawa T, Kikuta J, Sudo T, et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol 2019;20:1631-43.
https://doi.org/10.1038/s41590-019-0526-7.
77. Meirow Y, Jovanovic M, Zur Y, et al. Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res 2022;10:36.
https://doi.org/10.1038/s41413-022-00206-z.
78. Madel MB, Ibáñez L, Ciucci T, et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. Elife 2020;9:e54493.
https://doi.org/10.7554/eLife.54493.
79. Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol 2007;82:244-52.
https://doi.org/10.1189/jlb.0307191.
80. Takeyama N, Yabuki T, Kumagai T, et al. Selective expansion of the CD14(+)/CD16(bright) subpopulation of circulating monocytes in patients with hemophagocytic syndrome. Ann Hematol 2007;86:787-92.
https://doi.org/10.1007/s00277-007-0332-4.
81. Todd I, Radford PM, Ziegler-Heitbrock L, et al. Elevated CD16 expression by monocytes from patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 2007;56:4182-8.
https://doi.org/10.1002/art.23133.
86. Kawanaka N, Yamamura M, Aita T, et al. CD14+,CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum 2002;46:2578-86.
https://doi.org/10.1002/art.10545.
87. Rossol M, Kraus S, Pierer M, et al. The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum 2012;64:671-7.
https://doi.org/10.1002/art.33418.
88. Klimek E, Mikołajczyk T, Sulicka J, et al. Blood monocyte subsets and selected cardiovascular risk markers in rheumatoid arthritis of short duration in relation to disease activity. Biomed Res Int 2014;2014:736853.
https://doi.org/10.1155/2014/736853.
89. Weldon AJ, Moldovan I, Cabling MG, et al. Surface APRIL is elevated on myeloid cells and is associated with disease activity in patients with rheumatoid arthritis. J Rheumatol 2015;42:749-59.
https://doi.org/10.3899/jrheum.140630.
90. Tsukamoto M, Seta N, Yoshimoto K, et al. CD14(bright)CD16+ intermediate monocytes are induced by interleukin-10 and positively correlate with disease activity in rheumatoid arthritis. Arthritis Res Ther 2017;19:28.
https://doi.org/10.1186/s13075-016-1216-6.
91. Yang J, Zhang L, Yu C, et al. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2014;2:1.
https://doi.org/10.1186/2050-7771-2-1.
92. Yoon BR, Yoo SJ, Choi Y, et al. Functional phenotype of synovial monocytes modulating inflammatory T-cell responses in rheumatoid arthritis (RA). PLoS One 2014;9:e109775.
https://doi.org/10.1371/journal.pone.0109775.
93. Winchester R, Giles JT, Nativ S, et al. Association of elevations of specific T cell and monocyte subpopulations in rheumatoid arthritis with subclinical coronary artery atherosclerosis. Arthritis Rheumatol 2016;68:92-102.
https://doi.org/10.1002/art.39419.
95. Ortiz-Ruiz A, Ruiz-Heredia Y, Morales ML, et al. Myc-related mitochondrial activity as a novel target for multiple myeloma. Cancers (Basel) 2021;13:1662.
https://doi.org/10.3390/cancers13071662.
97. Sponaas AM, Moen SH, Liabakk NB, et al. The proportion of CD16(+)CD14(dim) monocytes increases with tumor cell load in bone marrow of patients with multiple myeloma. Immun Inflamm Dis 2015;3:94-102.
https://doi.org/10.1002/iid3.53.
98. Bolzoni M, Ronchetti D, Storti P, et al. IL21R expressing CD14(+)CD16(+) monocytes expand in multiple myeloma patients leading to increased osteoclasts. Haematologica 2017;102:773-84.
https://doi.org/10.3324/haematol.2016.153841.
99. Petitprez V, Royer B, Desoutter J, et al. CD14+ CD16+ monocytes rather than CD14+ CD51/61+ monocytes are a potential cytological marker of circulating osteoclast precursors in multiple myeloma. A preliminary study. Int J Lab Hematol 2015;37:29-35.
https://doi.org/10.1111/ijlh.12216.