4. Hoshino Y, Takechi M, Moazen M, et al. Synchondrosis fusion contributes to the progression of postnatal craniofacial dysmorphology in syndromic craniosynostosis. J Anat 2023;242:387-401.
https://doi.org/10.1111/joa.13790.
5. Vora SR, Camci ED, Cox TC. Postnatal ontogeny of the cranial base and craniofacial skeleton in male C57BL/6J mice: A reference standard for quantitative analysis. Front Physiol 2015;6:417.
https://doi.org/10.3389/fphys.2015.00417.
6. Maga AM, Navarro N, Cunningham ML, et al. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico. Front Physiol 2015;6:92.
https://doi.org/10.3389/fphys.2015.00092.
7. Macholán M, Mikula O, Vohralík V. Geographic phenetic variation of two eastern-Mediterranean non-commensal mouse species, Mus macedonicus and M. cypriacus (Rodentia: Muridae) based on traditional and geometric approaches to morphometrics. Zool Anz 2008;247:67-80.
https://doi.org/10.1016/j.jcz.2007.07.003.
8. Singh N, Dutka T, Devenney BM, et al. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology. Dis Model Mech 2015;8:271-9.
https://doi.org/10.1242/dmm.017889.
9. Nagata M, Nuckolls GH, Wang X, et al. The primary site of the acrocephalic feature in Apert Syndrome is a dwarf cranial base with accelerated chondrocytic differentiation due to aberrant activation of the FGFR2 signaling. Bone 2011;48:847-56.
https://doi.org/10.1016/j.bone.2010.11.014.
10. Eswarakumar VP, Horowitz MC, Locklin R, et al. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc Natl Acad Sci USA 2004;101:12555-60.
https://doi.org/10.1073/pnas.0405031101.
11. Eswarakumar VP, Monsonego-Ornan E, Pines M, et al. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 2002;129:3783-93.
https://doi.org/10.1242/dev.129.16.3783.
12. Perlyn CA, DeLeon VB, Babbs C, et al. The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three-dimensional MicroCT. Cleft Palate Craniofac J 2006;43:740-8.
https://doi.org/10.1597/05-212.
13. Laurita J, Koyama E, Chin B, et al. The Muenke syndrome mutation (FgfR3P244R) causes cranial base shortening associated with growth plate dysfunction and premature perichondrial ossification in murine basicranial synchondroses. Dev Dyn 2011;240:2584-96.
https://doi.org/10.1002/dvdy.22752.
14. Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999;104:1517-25.
https://doi.org/10.1172/jci6690.
16. Khonsari RH, Ohazama A, Raouf R, et al. Multiple postnatal craniofacial anomalies are characterized by conditional loss of polycystic kidney disease 2 (Pkd2). Hum Mol Genet 2013;22:1873-85.
https://doi.org/10.1093/hmg/ddt041.
18. Panda SP, Guntur AR, Polusani SR, et al. Conditional deletion of cytochrome p450 reductase in osteoprogenitor cells affects long bone and skull development in mice recapitulating antley-bixler syndrome: role of a redox enzyme in development. PLoS One 2013;8:e75638.
https://doi.org/10.1371/journal.pone.0075638.
19. Liu J, Nam HK, Campbell C, et al. Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(−/−) mouse model of infantile hypophosphatasia. Bone 2014;67:81-94.
https://doi.org/10.1016/j.bone.2014.06.040.
20. Tsukamoto Y, Kajii TS, Oonishi Y, et al. Growth and development of the cranial base in mice that spontaneously develop anterior transverse crossbite. Am J Orthod Dentofacial Orthop 2008;134:676-83.
https://doi.org/10.1016/j.ajodo.2006.08.025.
21. Lieberman DE, Hallgrímsson B, Liu W, et al. Spatial packing, cranial base angulation, and craniofacial shape variation in the mammalian skull: testing a new model using mice. J Anat 2008;212:720-35.
https://doi.org/10.1111/j.1469-7580.2008.00900.x.