2. Farhat GN, Cauley JA. The link between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab 2008;5:19-34.
3. Farhat GN, Newman AB, Sutton-Tyrrell K, et al. The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporos Int 2007;18:999-1008.
https://doi.org/10.1007/s00198-007-0338-8.
4. Prasad M, Reriani M, Khosla S, et al. Coronary microvascular endothelial dysfunction is an independent predictor of development of osteoporosis in postmenopausal women. Vasc Health Risk Manag 2014;10:533-8.
https://doi.org/10.2147/vhrm.S63580.
5. Browner WS, Seeley DG, Vogt TM, et al. Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet 1991;338:355-8.
https://doi.org/10.1016/0140-6736(91)90489-c.
6. Farhat GN, Strotmeyer ES, Newman AB, et al. Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int 2006;79:102-11.
https://doi.org/10.1007/s00223-006-0052-0.
7. Ye C, Xu M, Wang S, et al. Decreased bone mineral density is an independent predictor for the development of atherosclerosis: A systematic review and meta-analysis. PLoS One 2016;11:e0154740.
https://doi.org/10.1371/journal.pone.0154740.
8. Kiel DP, Kauppila LI, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 2001;68:271-6.
https://doi.org/10.1007/bf02390833.
9. Chan JJ, Cupples LA, Kiel DP, et al. QCT volumetric bone mineral density and vascular and valvular calcification: The framingham study. J Bone Miner Res 2015;30:1767-74.
https://doi.org/10.1002/jbmr.2530.
11. Idelevich A, Rais Y, Monsonego-Ornan E. Bone Gla protein increases HIF-1alpha-dependent glucose metabolism and induces cartilage and vascular calcification. Arterioscler Thromb Vasc Biol 2011;31:e55-71.
https://doi.org/10.1161/atvbaha.111.230904.
12. Tacey A, Qaradakhi T, Brennan-Speranza T, et al. Potential role for osteocalcin in the development of atherosclerosis and blood vessel disease. Nutrients 2018;10:
https://doi.org/10.3390/nu10101426.
13. Zhang X, Shen Y, Xu Y, et al. Association of serum osteocalcin levels with major adverse cardiovascular events: A 4.4-year retrospective cohort study. Clin Exp Pharmacol Physiol 2018;45:3-9.
https://doi.org/10.1111/1440-1681.12853.
14. Zelniker TA, Jarolim P, Scirica BM, et al. Biomarker of collagen turnover (C-terminal telopeptide) and prognosis in patients with non- ST -elevation acute coronary syndromes. J Am Heart Assoc 2019;8:e011444.
https://doi.org/10.1161/jaha.118.011444.
15. Lerchbaum E, Schwetz V, Pilz S, et al. Association of bone turnover markers with mortality in women referred to coronary angiography: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Osteoporos Int 2014;25:455-65.
https://doi.org/10.1007/s00198-013-2411-9.
16. Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 2007;27:2302-9.
https://doi.org/10.1161/atvbaha.107.144824.
17. Gregson CL, Dennison EM, Compston JE, et al. Disease-specific perception of fracture risk and incident fracture rates: GLOW cohort study. Osteoporos Int 2014;25:85-95.
https://doi.org/10.1007/s00198-013-2438-y.
18. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008;358:1336-45.
https://doi.org/10.1056/NEJMoa072100.
19. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;139:e1082-e143.
https://doi.org/10.1161/cir.0000000000000625.
20. Wiegandt YL, Sigvardsen PE, Sørgaard MH, et al. The relationship between volumetric thoracic bone mineral density and coronary calcification in men and women - results from the Copenhagen General Population Study. Bone 2019;121:116-20.
https://doi.org/10.1016/j.bone.2019.01.010.
21. Ahmadi N, Mao SS, Hajsadeghi F, et al. The relation of low levels of bone mineral density with coronary artery calcium and mortality. Osteoporos Int 2018;29:1609-16.
https://doi.org/10.1007/s00198-018-4524-7.
22. Kim KI, Suh JW, Choi SY, et al. Is reduced bone mineral density independently associated with coronary artery calcification in subjects older than 50 years? J Bone Miner Metab 2011;29:369-76.
https://doi.org/10.1007/s00774-010-0229-5.
24. World Health Organization. WHO scientific group on the assessment of osteoporosis at primary health care level: Summary meeting report 2004 [cited by 2021 Jul 28]. Available from:
http://www.who.int/chp/topics/Osteoporosis.pdf.
30. Xu R, Cheng XC, Zhang Y, et al. Association of severity of coronary lesions with bone mineral density in postmenopausal women. Arq Bras Cardiol 2018;110:211-6.
https://doi.org/10.5935/abc.20180035.
31. Choi SH, An JH, Lim S, et al. Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin Endocrinol (Oxf) 2009;71:644-51.
https://doi.org/10.1111/j.1365-2265.2009.03535.x.
32. Hyder JA, Allison MA, Wong N, et al. Association of coronary artery and aortic calcium with lumbar bone density: the MESA Abdominal Aortic Calcium Study. Am J Epidemiol 2009;169:186-94.
https://doi.org/10.1093/aje/kwn303.
34. Nakama C, Kadowaki T, Choo J, et al. Cross-sectional association of bone mineral density with coronary artery calcification in an international multi-ethnic population-based cohort of men aged 40-49: ERA JUMP study. Int J Cardiol Heart Vasc 2020;30:100618.
https://doi.org/10.1016/j.ijcha.2020.100618.
36. Farhat GN, Cauley JA, Matthews KA, et al. Volumetric BMD and vascular calcification in middle-aged women: the Study of Women’s Health Across the Nation. J Bone Miner Res 2006;21:1839-46.
https://doi.org/10.1359/jbmr.060903.
37. Barascuk N, Skjøt-Arkil H, Register TC, et al. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes. BMC Cardiovasc Disord 2010;10:19.
https://doi.org/10.1186/1471-2261-10-19.
38. Massera D, Xu S, Walker MD, et al. Biochemical markers of bone turnover and risk of incident hip fracture in older women: the Cardiovascular Health Study. Osteoporos Int 2019;30:1755-65.
https://doi.org/10.1007/s00198-019-05043-1.
39. Reyes-Garcia R, Rozas-Moreno P, Jimenez-Moleon JJ, et al. Relationship between serum levels of osteocalcin and atherosclerotic disease in type 2 diabetes. Diabetes Metab 2012;38:76-81.
https://doi.org/10.1016/j.diabet.2011.07.008.
40. Bao Y, Zhou M, Lu Z, et al. Serum levels of osteocalcin are inversely associated with the metabolic syndrome and the severity of coronary artery disease in Chinese men. Clin Endocrinol (Oxf) 2011;75:196-201.
https://doi.org/10.1111/j.1365-2265.2011.04065.x.
41. Lv Q, Zhou J, Liu J, et al. Serum osteocalcin is inversely associated with lower extremity atherosclerotic disease in Chinese patients with type 2 diabetes mellitus. Endocr J 2021;68:137-44.
https://doi.org/10.1507/endocrj.EJ20-0186.
42. Ogawa-Furuya N, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin levels are inversely associated with abdominal aortic calcification in men with type 2 diabetes mellitus. Osteoporos Int 2013;24:2223-30.
https://doi.org/10.1007/s00198-013-2289-6.
43. Kim KM, Lim S, Moon JH, et al. Lower uncarboxylated osteocalcin and higher sclerostin levels are significantly associated with coronary artery disease. Bone 2016;83:178-83.
https://doi.org/10.1016/j.bone.2015.11.008.
44. Millar SA, Patel H, Anderson SI, et al. Osteocalcin, vascular calcification, and atherosclerosis: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2017;8:183.
https://doi.org/10.3389/fendo.2017.00183.
45. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int 2016;27:367-76.
https://doi.org/10.1007/s00198-015-3386-5.
49. Rumberger JA, Sheedy PF, Breen JF, et al. Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis. J Am Coll Cardiol 1997;29:1542-8.
https://doi.org/10.1016/s0735-1097(97)00093-4.
50. Ma ES, Yang ZG, Li Y, et al. Correlation of calcium measurement with low dose 64-slice CT and angiographic stenosis in patients with suspected coronary artery disease. Int J Cardiol 2010;140:249-52.
https://doi.org/10.1016/j.ijcard.2008.11.043.
51. Almasi A, Pouraliakbar H, Sedghian A, et al. The value of coronary artery calcium score assessed by dual-source computed tomography coronary angiography for predicting presence and severity of coronary artery disease. Pol J Radiol 2014;79:169-74.
https://doi.org/10.12659/pjr.890809.