4. Goldberg M, Six N, Decup F, et al. Bioactive molecules and the future of pulp therapy. Am J Dent 2003;16:66-76.
5. Wan C, Yuan G, Luo D, et al. The dentin sialoprotein (DSP) domain regulates dental mesenchymal cell differentiation through a novel surface receptor. Sci Rep 2016;6:29666.
http://dx.doi.org/10.1038/srep29666
.
7. Maciejewska I, Cowan C, Svoboda K, et al. The NH2-terminal and COOH-terminal fragments of dentin matrix protein 1 (DMP1) localize differently in the compartments of dentin and growth plate of bone. J Histochem Cytochem 2009;57:155-66.
http://dx.doi.org/10.1369/jhc.2008.952630
.
11. Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 2011;3:711-35.
http://dx.doi.org/10.2741/e281
.
12. Addison WN, Nakano Y, Loisel T, et al. MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 2008;23:1638-49.
http://dx.doi.org/10.1359/jbmr.080601
.
16. Ibrahim S, Strange AP, Aguayo S, et al. Phenotypic properties of collagen in dentinogenesis imperfecta associated with osteogenesis imperfecta. Int J Nanomedicine 2019;14:9423-35.
http://dx.doi.org/10.2147/ijn.S217420
.
20. In: Burr DB, Allen MR, editors. Basic and applied bone biology. 2nd ed. London, UK: Elsevier; 2019.
21. Weiner S, Wagner HD. The material bone: Structure-mechanical function relations. Annu Rev Mater Sci 1998;28:271-98.
22. Lowenstam HA, Weiner S. On biomineralization. New York, NY: Oxford University Press; 1989.
23. Siperko LM, Landis WJ. Atomic force microscopy imaging of hydroxyapatite. J Mater Sci Lett 1993;12:1068-9.
24. In: Hay ED, editors. Cell biology of extracellular matrix. 2nd ed. New York, NY: Plenum; 1991.
25. Delmas PD, Tracy RP, Riggs BL, et al. Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif Tissue Int 1984;36:308-16.
http://dx.doi.org/10.1007/bf02405335
.
28. Reid SA. Micromorphological characterisation of normal human bone surfaces as a function of age. Scanning Microsc 1987;1:579-97.
29. Bourne GH. The biochemistry and physiology of bone. 2nd ed. New York, NY: Academic Press; 1971.
30. In: Nanci A, editors. Ten Cate’s oral histology. 9th ed. St. Louis, MO: Elsevier; 2017.
35. Mandracchia VJ, Nelson SC, Barp EA. Current concepts of bone healing. Clin Podiatr Med Surg 2001;18:55-77.
36. Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003;88:873-84.
http://dx.doi.org/10.1002/jcb.10435
.
46. Lu C, Marcucio R, Miclau T. Assessing angiogenesis during fracture healing. Iowa Orthop J 2006;26:17-26.
47. Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 2002;99:9656-61.
http://dx.doi.org/10.1073/pnas.152324099
.
52. Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res 1974;34-81.
53. Peng H, Usas A, Olshanski A, et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005;20:2017-27.
http://dx.doi.org/10.1359/jbmr.050708
.
55. Zelzer E, McLean W, Ng YS, et al. Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 2002;129:1893-904.
56. Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 2000;141:1667-74.
http://dx.doi.org/10.1210/endo.141.5.7458
.
57. Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 2002;143:1545-53.
http://dx.doi.org/10.1210/endo.143.4.8719
.
59. Tatsuyama K, Maezawa Y, Baba H, et al. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 2000;44:269-78.
64. Collin-Osdoby P, Rothe L, Bekker S, et al. Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro. J Bone Miner Res 2002;17:1859-71.
http://dx.doi.org/10.1359/jbmr.2002.17.10.1859
.
65. Globus RK, Patterson-Buckendahl P, Gospodarowicz D. Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 1988;123:98-105.
http://dx.doi.org/10.1210/endo-123-1-98
.
68. Oka S, Oka K, Xu X, et al. Cell autonomous requirement for TGF-beta signaling during odontoblast differentiation and dentin matrix formation. Mech Dev 2007;124:409-15.
http://dx.doi.org/10.1016/j.mod.2007.02.003
.
70. Ricucci D, Loghin S, Lin LM, et al. Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process? J Dent 2014;42:1156-70.
http://dx.doi.org/10.1016/j.jdent.2014.06.012
.
71. Dammaschke T. The formation of reparative dentine and Höhl cells in the dental pulp. ENDO (Lond Engl) 2010;4:255-61.
72. Hwang YC, Hwang IN, Oh WM, et al. Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 2008;39:153-60.
http://dx.doi.org/10.1007/s10735-007-9148-8
.