2. Hauge EM, Qvesel D, Eriksen EF, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 2001;16:1575-82.
https://doi.org/10.1359/jbmr.2001.16.9.1575.
8. Burini D, Farabollini B, Iacucci S, et al. A randomised controlled cross-over trial of aerobic training versus Qigong in advanced Parkinson’s disease. Eura Medicophys 2006;42:231-8.
9. Miyai I, Fujimoto Y, Ueda Y, et al. Treadmill training with body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil 2000;81:849-52.
https://doi.org/10.1053/apmr.2000.4439.
10. Lee S, Shin YA, Cho J, et al. Augmented skeletal nerves are associated with high-intensity aerobic exercise-induced bone gain in middle-aged mice. In: ASBMR 2021 Annual Meeting; 2021 Oct 1-4; Austin, TX: American Society for Bone and Mineral Research.
11. Chenu C. Role of innervation in the control of bone remodeling. J Musculoskelet Neuronal Interact 2004;4:132-4.
12. Hara-Irie F, Amizuka N, Ozawa H. Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at the epiphyseal trabecules facing the growth plate of rat femurs. Bone 1996;18:29-39.
https://doi.org/10.1016/8756-3282(95)00425-4.
14. Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 2011;178:196-207.
https://doi.org/10.1016/j.neuroscience.2011.01.039.
15. Tomlinson RE, Li Z, Zhang Q, et al. NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep 2016;16:2723-35.
https://doi.org/10.1016/j.celrep.2016.08.002.
16. Li Z, Meyers CA, Chang L, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest 2019;129:5137-50.
https://doi.org/10.1172/jci128428.
18. Lee S, Hwang C, Marini S, et al. NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun 2021;12:4939.
https://doi.org/10.1038/s41467-021-25143-z.
20. Brazill JM, Beeve AT, Craft CS, et al. Nerves in bone: Evolving concepts in pain and anabolism. J Bone Miner Res 2019;34:1393-406.
https://doi.org/10.1002/jbmr.3822.
23. Khosla S, Drake MT, Volkman TL, et al. Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest 2018;128:4832-42.
https://doi.org/10.1172/jci122151.
24. Ma Y, Nyman JS, Tao H, et al. β2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology 2011;152:1412-22.
https://doi.org/10.1210/en.2010-0881.
25. Bajayo A, Bar A, Denes A, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A 2012;109:15455-60.
https://doi.org/10.1073/pnas.1206061109.
26. Tomlinson RE, Christiansen BA, Giannone AA, et al. The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol (Lausanne) 2020;11:646.
https://doi.org/10.3389/fendo.2020.00646.
33. Pérez-López LM, Cabrera-González M, Gutiérrez-de la Iglesia D, et al. Update review and clinical presentation in congenital insensitivity to pain and anhidrosis. Case Rep Pediatr 2015;2015:589852.
https://doi.org/10.1155/2015/589852.
34. Wang L, Zhou S, Liu B, et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res 2006;24:2238-45.
https://doi.org/10.1002/jor.20269.
35. Ortuño MJ, Robinson ST, Subramanyam P, et al. Serotonin-reuptake inhibitors act centrally to cause bone loss in mice by counteracting a local anti-resorptive effect. Nat Med 2016;22:1170-9.
https://doi.org/10.1038/nm.4166.
36. Oury F, Yadav VK, Wang Y, et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev 2010;24:2330-42.
https://doi.org/10.1101/gad.1977210.
38. Kondo H, Togari A. Continuous treatment with a low-dose β-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int 2011;88:23-32.
https://doi.org/10.1007/s00223-010-9421-9.
39. Qiao Y, Wang Y, Zhou Y, et al. The role of nervous system in adaptive response of bone to mechanical loading. J Cell Physiol 2019;234:7771-80.
https://doi.org/10.1002/jcp.27683.
40. Minamizaki T, Yoshiko Y, Kozai K, et al. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone 2009;44:1177-85.
https://doi.org/10.1016/j.bone.2009.02.010.
41. Raisz LG, Woodiel FN. Effects of selective prostaglandin EP2 and EP4 receptor agonists on bone resorption and formation in fetal rat organ cultures. Prostaglandins Other Lipid Mediat 2003;71:287-92.
https://doi.org/10.1016/s1098-8823(03)00049-2.
43. Duong S, Bravo D, Todd KJ, et al. Treatment of complex regional pain syndrome: an updated systematic review and narrative synthesis. Can J Anaesth 2018;65:658-84.
https://doi.org/10.1007/s12630-018-1091-5.
45. Sachdeva R, Theisen CC, Ninan V, et al. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Exp Neurol 2016;276:72-82.
https://doi.org/10.1016/j.expneurol.2015.09.004.
46. Teodori RM, Betini J, de Oliveira LS, et al. Swimming exercise in the acute or late phase after sciatic nerve crush accelerates nerve regeneration. Neural Plast 2011;2011:783901.
https://doi.org/10.1155/2011/783901.
49. Tomlinson RE, Li Z, Li Z, et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A 2017;114:E3632-41.
https://doi.org/10.1073/pnas.1701054114.
51. Heffner MA, Anderson MJ, Yeh GC, et al. Altered bone development in a mouse model of peripheral sensory nerve inactivation. J Musculoskelet Neuronal Interact 2014;14:1-9.
52. Sample SJ, Behan M, Smith L, et al. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones. J Bone Miner Res 2008;23:1372-81.
https://doi.org/10.1359/jbmr.080407.
53. English AW, Cucoranu D, Mulligan A, et al. Treadmill training enhances axon regeneration in injured mouse peripheral nerves without increased loss of topographic specificity. J Comp Neurol 2009;517:245-55.
https://doi.org/10.1002/cne.22149.
54. Park JS, Höke A. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors. PLoS One 2014;9:e90245.
https://doi.org/10.1371/journal.pone.0090245.
57. Park JS, Kim S, Hoke A. An exercise regimen prevents development paclitaxel induced peripheral neuropathy in a mouse model. J Peripher Nerv Syst 2015;20:7-14.
https://doi.org/10.1111/jns.12109.
58. Chae CH, Jung SL, An SH, et al. Swimming exercise stimulates neuro-genesis in the subventricular zone via increase in synapsin I and nerve growth factor levels. Biol Sport 2014;31:309-14.
https://doi.org/10.5604/20831862.1132130.
59. Côté MP, Azzam GA, Lemay MA, et al. Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury. J Neurotrauma 2011;28:299-309.
https://doi.org/10.1089/neu.2010.1594.
60. Hutchinson KJ, Gómez-Pinilla F, Crowe MJ, et al. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain 2004;127:1403-14.
https://doi.org/10.1093/brain/awh160.
61. Keeler BE, Liu G, Siegfried RN, et al. Acute and prolonged hindlimb exercise elicits different gene expression in motoneurons than sensory neurons after spinal cord injury. Brain Res 2012;1438:8-21.
https://doi.org/10.1016/j.brainres.2011.12.015.
64. Tarperi C, Sanchis-Gomar F, Montagnana M, et al. Effects of endurance exercise on serum concentration of calcitonin gene-related peptide (CGRP): a potential link between exercise intensity and headache. Clin Chem Lab Med 2020;58:1707-12.
https://doi.org/10.1515/cclm-2019-1337.
65. Liang Y, Sheng S, Fang P, et al. Exercise-induced galanin release facilitated GLUT4 translocation in adipocytes of type 2 diabetic rats. Pharmacol Biochem Behav 2012;100:554-9.
https://doi.org/10.1016/j.pbb.2011.10.026.
66. Mrak E, Guidobono F, Moro G, et al. Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by β-catenin stabilization. J Cell Physiol 2010;225:701-8.
https://doi.org/10.1002/jcp.22266.
67. Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 1999;104:1363-74.
https://doi.org/10.1172/jci6800.
69. Kanazawa I, Takeno A, Tanaka KI, et al. Osteoporosis and vertebral fracture are associated with deterioration of activities of daily living and quality of life in patients with type 2 diabetes mellitus. J Bone Miner Metab 2019;37:503-11.
https://doi.org/10.1007/s00774-018-0948-6.
70. Kim JH, Jung MH, Lee JM, et al. Diabetic peripheral neuropathy is highly associated with nontraumatic fractures in Korean patients with type 2 diabetes mellitus. Clin Endocrinol (Oxf) 2012;77:51-5.
https://doi.org/10.1111/j.1365-2265.2011.04222.x.
71. Shibuya N, Humphers JM, Fluhman BL, et al. Factors associated with nonunion, delayed union, and malunion in foot and ankle surgery in diabetic patients. J Foot Ankle Surg 2013;52:207-11.
https://doi.org/10.1053/j.jfas.2012.11.012.
73. Stine KC, Wahl EC, Liu L, et al. Nutlin-3 treatment spares cisplatin-induced inhibition of bone healing while maintaining osteosarcoma toxicity. J Orthop Res 2016;34:1716-24.
https://doi.org/10.1002/jor.23192.
74. Stine KC, Wahl EC, Liu L, et al. Cisplatin inhibits bone healing during distraction osteogenesis. J Orthop Res 2014;32:464-70.
https://doi.org/10.1002/jor.22527.
77. Abdala R, Levi L, Longobardi V, et al. Severe bone microarchitecture deterioration in a family with hereditary neuropathy: evidence of the key role of the mechanostat. Osteoporos Int 2020;31:2477-80.
https://doi.org/10.1007/s00198-020-05674-9.